Sugar-Assisted Chirality Control of Tris(2,2'-bipyridine)-Metal Complexes ## Kazuaki NAKASHIMA and Seiji SHINKAI* Chemirecognics Project, ERATO, Research Development Corporation of Japan, Aikawa 2432-3, Kurume, Fukuoka 830 2,2'-Bipyridine-4,4'-diboronic acid (2), a 2,2'-bipyridine derivative with sugarbinding sites was synthesized. The Δvs . Λ chirality of the Fe²⁺·2₃ complex was selectively generated in correlation with the absolute configuration of added saccharides. Boronic acids, which have been known since a long time ago to form covalently-bonded complexes with diols in an aqueous system, now attract a great deal of attention as a new interactive tool for sugar recognition. $^{1-8}$) We previously designed compound 1 to recognize disaccharides: the distance between two boronic acids in 1 with a syn conformation is ca. 7.4 Å, which is comparable with the distance between 1,2-diols and 4',6'-diols in disaccharides (assuming a linear conformation) serving as boronic-acid-binding sites. 5) Interestingly, only when 1 formed cyclic 1:1 complexes with disaccharides (e.g., D-maltose, D-cellobiose, and D-lactose), clear exciton coupling bands appeared in circular dichroism (CD) spectroscopy because of asymmetric immobilization of the two benzene rings. 5) We considered that this concept could be further extended to the generation of novel sugar-assisted asymmetry, for example, Δvs . Δ metal complexes by using 2 as a metal ligand: that is, the chirality generated in 2 through the complexation with disaccharides would be eventually reflected as the Δvs . Δ enantioselectivity in the metal- Δ complex. To test the feasibility of this idea we synthesized 2 according to Scheme Δ and estimated the chirality of the Fe²⁺ complexes in the presence of saccharides by CD spectroscopy. Δ Conditions: a) $\rm H_2O_2/CH_3COOH$ b) fuming $\rm HNO_3/fuming~H_2SO_4$ c) $\rm CH_3COBr/CH_3COOH$ d) $\rm PBr_3/CHCl_3$ e) (i) $\it n$ -BuLi/THF, -90 °C (ii) $\rm B(O\it iPr)_3/THF$, -90 °C (iii) $\rm H_2O$ Scheme 1. Compound 2 was identified by IR, ${}^{1}H$ NMR, and mass spectral evidence. 11 Figure 1 shows the CD spectra of 2 in the presence of D-maltose ($[\theta]_{205} = -2900$ deg cm² dmol⁻¹) or D-cellobiose ($[\theta]_{212} = 6600$ deg cm² dmol⁻¹). It is known that 1 shows the negative exciton coupling with the negative first Cotton effect and the positive second Cotton effect in the presence of D-maltose and the positive exciton coupling with the positive first Cotton effect and the negative second Cotton effect in the presence of D-cellobiose. 5 The coincidence between the CD sign in Fig. 1 and that of the first Cotton effect in the disaccharide 1 complexes suggests that the bands in Fig. 1 correspond to the first Cotton effect in the exciton coupling. A plot of $[\theta]_{205}$ against D-maltose concentration is shown in Fig. 2. The concentration dependence is biphasic with a $[\theta]_{205}$ minimum. Other disaccharides also showed a similar dependence. A similar concentration dependence was previously observed for 1.5) This is rationalized by the successive complex formation from a CD active cyclic 1:1 complex at the low disaccharide concentration to a CD-silent noncyclic 1:2 1 (or 2) / disaccharide complex at the high disaccharide concentration (Scheme 2). 12) Fig. 1. CD spectra of 2 (5.0 mM) in the presence of D-maltose (50 mM, ——) or D-cellobiose (50 mM, ----) and absorption spectrum of 2 (32.4 mM): 25 °C, pH = 10.5. Fig. 2. Plot of $[\theta]_{205}$ vs. [D-maltose]: 25 °C, pH = 10.5, [2] = 5.0 mM. Scheme 2. Chemistry Letters, 1994 Very interestingly, we found that when Fe^{2+} (added as $FeCl_2$) is added to the solution containing the disaccharide·**2** complex, the CD spectrum with an exciton coupling band appears at the metal-ligand charge-transfer (MLCT) band region (Fig. 3). The same CD spectrum was produced when disaccharide was added to the solution containing the $Fe^{2+}\cdot 2_3$ complex. Separately, we confirmed that the $[Fe(2,2-bipyridine)_3]^{2+}$ is CD silent even in the presence of disaccharides. Hence, the CD-activity is attributable to the generation of chiral Fe^{2+} complexes which is originated from the disaccharide-diboronic acid interaction. Figure 3 shows that $Fe^{2+}\cdot (2\cdot D-maltose)_3$ adopts Λ chirality while $Fe^{2+}\cdot (2\cdot D-cellobiose)_3$ adopts Δ chirality. (13) Figure 4 shows a plot of $[\theta]_{556}$ ($[\theta]$ minimum) and $[\theta]_{480}$ ($[\theta]$ maximum) at the MLCT band region vs. D-maltose concentration. Strangely, the MLCT band region is still CD active in the presence of excess D-maltose while 2 itself becomes CD-silent.⁵⁾ This implies that in 2 the intramolecular cross-link of two boronic acids is indispensable to the CD-activity whereas in Fe²⁺·(2·disaccharide)₃ it is not a prerequisite to the CD-activity. This was further corroborated by the CD-activity observed in the presence of D-glucose 1-phosphate ($[\theta]_{543} = -1000$, $[\theta]_{512} = 0$, and $[\theta]_{480} = 540 \text{ deg cm}^2 \text{ dmol}^{-1}$), Dglucose 6-phosphate ($[\theta]_{561} = 1600$, $[\theta]_{524} = 0$, and $[\theta]_{486} = -870 \text{ deg cm}^2 \text{ dmol}^{-1}$, and α -methyl Dglucopyranoside ($[\theta]_{563} = -2700$, $[\theta]_{522} = 0$, and $[\theta]_{481} = 1700 \text{ deg cm}^2 \text{ dmol}^{-1})$ which have only one boronic-acid-binding site and cannot cross-link two boronic acids intramolecularly (Fig. 5). The results indicate that the $\Delta \implies \Lambda$ interconversion can take place even 4 °C and the CD sign for the thermodynamically more stable enantiomer appears. At present we cannot yet determine the optical purity of the Fe²⁺·(2·disaccharide)₃ complexes because the effort toward the optical resolution (we have tried the resolution by chiral-packed columns, diastereomer formation with tartaric acid, *etc.*) is unsuccessful so far. Fig. 3. CD spectra of Fe²⁺· $\mathbf{2}_3$ (6.0 mM) in the presence of D-maltose (18 mM, _____) and D-cellobiose (18 mM, _____): 4 °C, pH = 10.5 and absorption spectrum of Fe²⁺· $\mathbf{2}_3$ (0.5 mM): 25 °C, pH = 10.5. Fig. 4. Plot of $[\theta]_{556}$ (O) and $[\theta]_{480}$ (\square) vs. [D-maltose]: 25 °C, pH = 10.5, $[\text{Fe}^{2+} \cdot 2_3] = 6.0 \text{ mM}$. Fig. 5. CD spectra of [Fe²⁺·**2**₃] (6.0 mM) in the presence of D-glucose 1-phosphate (added as dipotassium salt, 600 mM, _____), D-glucose 6-phosphate (added as potassium salt, 600 mM, _____), and α -methyl D-glucopyranoside (600 mM, _____): 4 °C, pH = 10.5. Judging from the $[\theta]$ value determined for optically-pure $[Fe(2,2'-bipyridine)_3]^{2+},13)$ we presume that the optical purity of $Fe^{2+}\cdot(2\cdot D-maltose)_3$ which gives the largest $[\theta]$ value in the present system is ca. 20%. In conclusion, the present study has demonstrated that the Δvs . Λ chirality of the Fe²⁺·**2**₃ complex can be selectively generated by the saccharide addition and the selectivity is correlated with the absolute configuration of added saccharides. This is a novel application of a boronic-acid-dependent sugar-interface to the chirality control of metal complexes. ## References - 1) J. Yoon and A. W. Czarnik, J. Am. Chem. Soc., 114, 5874 (1992). - 2) M. -F. Paugan and B. D. Smith, *Tetrahedron Lett.*, **34**, 3723 (1993). - 3) Y. Nagai, K. Kobayashi, H. Toi, and Y. Aoyama, Bull. Chem. Soc. Jpn., 66, 2965 (1993). - 4) K. Tsukagoshi and S. Shinkai, J. Org. Chem., 56, 4089 (1991); Y. Shiomi, M. Saisho, K. Tsukagoshi, and S. Shinkai, J. Chem. Soc., Perkin Trans. 1, 1993, 2111. - 5) K. Kondo, Y. Shiomi, M. Saisho, T. Harada, and S. Shinkai, *Tetrahedron*, **48**, 8239 (1992); Y. Shiomi, K. Kondo, M. Saisho, T. Harada, K. Tsukagoshi, and S. Shinkai, *Supramol. Chem.*, **2**, 11 (1993). - 6) T. D. James, T. Harada, and S. Shinkai, J. Chem. Soc., Chem. Commun., 1993, 857 and 1176 (corrigendum). - 7) H. Murakami, T. Nagasaki, I. Hamachi, and S. Shinkai, Tetrahedron Lett., 34, 6273 (1993). - 8) G. Wulff, S. Krieger, B. Kühneweg, and A. Steigel, J. Am. Chem. Soc., 116, 409 (1994). - 9) 4,4'-Dibromo-2,2'-bipyridine was synthesized according to the following papers: J. Haginiwa, *Yakugaku Zasshi*, **75**, 731 (1955); G. Maerker and F. H. Case, *J. Am. Chem. Soc.*, **80**, 2745 (1958); D. Wenkert and R. B. Woodward, *J. Org. Chem.*, **48**, 283 (1983). However, we modified the reaction conditions to attain the higher yields: see a caption to Scheme 1. - 10) Fe²⁺ was chosen to make the system simple because [Fe(bpy)₃]²⁺ is formed in preference to [Febpy]²⁺ and [Fe(bpy)₂]²⁺; see M. R. McWhinnie and J. D. Miller, *Adv. Inorg. Chem. Radiochem.*, **12**, 135 (1969). - 11) Compound **2** was obtained as white powder; mp 463 °C (dec.); IR (KBr) 3450 cm⁻¹ (OH); ¹H NMR (CD₃OD) $\delta = 7.56$ (2H, dd, H₅ and H_{5'}), 8.17 (2H, s, broad, H₃ and H_{3'}), 8.37 (2H, dd, H₆ and H_{6'}), $J_{3,5} = J_{3',5'} = 1.0$ Hz, $J_{3,6} = J_{3',6'} = 1.0$ Hz, $J_{5,6} = J_{5',6'} = 4.9$ Hz; MS (SIMS(-)) m/z 243 ((M-1)⁻). - 12) UV absorption spectra of **2** were scarcely affected by the addition of saccharides. So, we think that there is no big difference in the dihedral angle between free **2** and 1:1 **2**·disaccharide complex. Thus, the CD spectra should arise from the shift of the equilibrium between (R)- and (S)-atropisomers. - 13) S. F. Mason and B. J. Peart, J. Chem. Soc., Dalton Trans., 1973, 949. (Received March 23, 1994)